Kernel local partition processes for functional data
نویسنده
چکیده
Functional data analysis commonly relies on the incorporation of basis functions having subject-specific coefficients, with the choice of basis and random effects distribution important. To allow the random effects distribution to be unknown, while inducing subject-specific basis selection and local borrowing of information across subjects, this article proposes a kernel local partition process (KLPP) prior. The KLPP selects the elements in a subject’s random effects vector locally from a collection of unique coefficient vectors, leading to a flexible local generalization of the Dirichlet process and to a sparse representation of complex functional data. Basic theoretical properties are considered, an MCMC algorithm is developed for posterior computation and the methods are applied to hormone data.
منابع مشابه
Multivariate kernel partition processes
This article considers the problem of accounting for unknown multivariate mixture distributions within Bayesian hierarchical models motivated by functional data analysis. Most nonparametric Bayes methods rely on global partitioning, with subjects assigned to a single cluster index for all their random effects. We propose a multivariate kernel partition process (KPP) that instead allows the clus...
متن کاملSome New Methods for Prediction of Time Series by Wavelets
Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...
متن کاملFisher’s Linear Discriminant Analysis for Weather Data by reproducing kernel Hilbert spaces framework
Recently with science and technology development, data with functional nature are easy to collect. Hence, statistical analysis of such data is of great importance. Similar to multivariate analysis, linear combinations of random variables have a key role in functional analysis. The role of Theory of Reproducing Kernel Hilbert Spaces is very important in this content. In this paper we study a gen...
متن کاملOn Sampling and Greedy MAP Inference of Constrained Determinantal Point Processes
Subset selection problems ask for a small, diverse yet representative subset of the given data. When pairwise similarities are captured by a kernel, the determinants of submatrices provide a measure of diversity or independence of items within a subset. Matroid theory gives another notion of independence, thus giving rise to optimization and sampling questions about Determinantal Point Processe...
متن کاملTHE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)
Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes. Small area estimation is needed in obtaining information on a small area, such as sub-district or village. Generally, in some cases, small area estimation uses parametric modeling. But in fact, a lot of models have no linear relationship between the small area average and the covariat...
متن کامل